

Iron Powder Toroid Inductors for Power Applications

Application Information

1 Introduction

The **ITP Series** of high-current toroidal inductors from ICE Components are designed for use in power applications such as **DC/DC converters**, **EMI filters**, and **energy storage systems**. These inductors feature iron powder toroidal cores with a single winding, optimized for handling high currents. They are a cost-effective choice for power designs that need a compact form factor.

2 Core Characteristics and Material Selection

Iron powder cores are a composite of insulated iron particles, which creates a distributed air gap within the material. This distributed gap allows the core to store significant energy before saturating, resulting in a gradual, or "soft," decrease in inductance as the DC bias current increases. This contrasts with gapped ferrite cores, which have a sharp saturation characteristic. The soft saturation makes iron powder cores well-suited for switch-mode power supply (SMPS) applications where a minor drop in inductance under high load is acceptable.

The ITP Series uses a single, heavy-gauge winding to achieve its specified current rating while minimizing DC resistance (DCR). This low DCR contributes to high efficiency.

3 Key Features and General Data

• Operating Temperature: -40°C to +105°C

Inductance Range: 10 μH to 1000 μH

Current Handling: Up to 20A

 Design: Low loss self-shielding design and a soft roll-off characteristic that reduces the risk of saturation

- Compliance: The series is RoHS compliant and meets REACH standards.
- Flammability: The materials used have a flammability rating of UL-94 V-0.

Page 1 of 3 08/29/2025

Specification Table

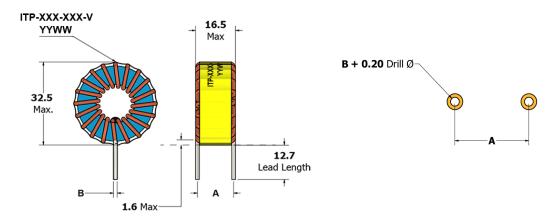
Part Number	L@ 0A (μΗ, +/-15%)	IDC (A)	L@IDC (µH, +/-15%)	DCR (Ω, Max.)	K Factor	Dim A (mm, Nom.)	Dim B (mm, Nom.)
ITP-0010-020-V	10	20.0	6.7	0.005	1.94	14.22	1.68
ITP-0012-019-V	12	19.1	7.8	0.005	2.13	14.22	1.68
ITP-0015-018-V	15	18.0	9.5	0.006	2.52	14.22	1.68
ITP-0018-017-V	18	17.2	11.1	0.006	2.71	14.22	1.68
ITP-0022-016-V	22	16.4	13.2	0.007	2.90	14.22	1.68
ITP-0027-016-V	27	15.6	15.7	0.008	3.29	14.22	1.68
ITP-0033-012-V	33	11.7	21.3	0.013	3.68	13.46	1.35
ITP-0039-011-V	39	11.2	24.7	0.014	3.87	13.46	1.35
ITP-0047-011-V	47	10.7	29.0	0.016	4.26	13.46	1.35
ITP-0056-010-V	56	10.2	33.7	0.017	4.65	13.46	1.35
ITP-0068-008-V	68	7.7	45.2	0.030	5.23	13.21	1.07
ITP-0100-007-V	100	7.0	63.1	0.037	6.20	13.21	1.07
ITP-0120-007-V	120	6.7	73.9	0.040	6.97	13.21	1.07
ITP-0150-005-V	150	5.0	101.4	0.071	7.74	12.95	0.86
ITP-0180-005-V	180	4.8	118.9	0.078	8.52	12.95	0.86
ITP-0220-006-V	220	5.8	123.8	0.054	9.29	14.22	1.07
ITP-0270-006-V	270	5.5	147.2	0.060	10.30	14.22	1.07
ITP-0330-005-V	330	5.2	174.1	0.067	11.40	14.22	1.07
ITP-0390-005-V	390	5.0	200.2	0.072	12.40	14.22	1.07
ITP-0470-004-V	470	3.8	271.4	0.130	13.60	13.72	0.86
ITP-0560-004-V	560	3.6	314.8	0.140	14.90	13.72	0.86
ITP-0680-003-V	680	3.4	370.7	0.150	16.50	13.72	0.86
ITP-0820-003-V	820	2.6	500.9	0.270	18.00	13.46	0.69
ITP-1000-002-V	1000	2.4	593.6	0.300	19.90	13.46	0.69

The specification table provides detailed data for various part numbers, including inductance at 0A and at the rated DC current (L@IDC), DC Resistance (DCR), and K Factor. The DC Bias Inductance, as a percentage of the nominal inductance, can be calculated using the K factor and the following formula:

$$\% \mathbf{L} = \frac{0.95}{0.01 + 4.657 \times 10^{-6} (\mathbf{K} \cdot \mathbf{I_{DC}})^{1.84}}$$

Where: %L is the percent of nominal inductance • K is the K Factor from the table • I_{DC} is the DC current in A

Page 2 of 3 08/29/2025



4 Performance and Design Considerations

Thermal Management

The **current rating** is determined by a **temperature rise of 30°C**. To ensure the inductor operates within its safe parameters, the total operating temperature, encompassing both the ambient temperature and the heat generated during operation, **should not exceed 105°C**.

5 Mechanical and Packaging Information

The ITP series inductors are designed for **through-hole mounting**. The dimensions are in millimeters (mm).

- Dimensions: Max Height: 32.5 mm | Max Diameter: 16.5 mm | Lead length: 12.7 mm
- Leads: Tinned to within 1.6 mm above the mounting plane.
- Packaging: 30 Pcs/Box | 12 Boxes/Carton | 360 Pcs/Carton

6 Custom Mounting and Inductance Options

Custom configurations including **horizontal mounting** and **custom inductances** are available.

For more information, you can visit the ICE Components website at https://www.icecomponents.com/product/itp-v-series/.

Page 3 of 3 08/29/2025